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10 Abstract  

Forecasting  environmental  hazards is critical  in  preventing  or  building  resilience  to  their  impacts 

on  human  communities and  ecosystems.  Environmental  data  science  is an  emerging  field  that  

can  be  harnessed  for  forecasting,  yet  more  work is needed  to  develop  methodologies that  can  

leverage  increasingly large  and  complex datasets for  decision  support.  Here  we  design  a  data-

driven  framework that  can,  for  the  first  time,  forecast  bacterial  standard  exceedances at  marine  

beaches with  three  days lead  time.  Using  historical  datasets collected  at  two  California  sites,  we  

train  nearly 400  forecast  models using  statistical  and  machine  learning  techniques and  test  

forecasts against   predictions from   both   a   naive   ‘persistence’   model   and   a   baseline   nowcast   

model.  Overall,  forecast  models are  found  to  have  similar  sensitivities and  specificities to  the  

persistence  model,  but  significantly higher  areas under  the  ROC  curve  (a  metric distinguishing  a  

model’s ability to   effectively parse   classes across decision   thresholds),   suggesting   forecasts can   

provide  enhanced  information  beyond  past  observations alone.  Forecast  model  performance  at  

all  lead  times was similar  to  that  of  nowcast  models.  Together,  results suggest  that  integrating  

the  forecasting  framework developed  in  this study into  beach  management  programs can  

enable  better  public notification  and  aid  in  proactive  pollution  and  health  risk management.  
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29 Synopsis:  New  environmental  data  science  methodologies are  needed  to  improve  

environmental  hazard  prediction.  This study presents a  framework to  forecast  regulatory 

exceedances of  fecal  indicator  bacteria  with  three  days lead  time.  
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36 Introduction  

Environmental  hazards including  earthquakes,  heat  waves,  wildfires,  disease  outbreaks,  and  

acute  water  pollution  threaten  ecosystems and  human  communities around  the  planet.  For  

example,  it  is estimated  that  weather- and  climate-related  disasters in  the  US  have  been  

responsible  for  more  than  9,000  deaths and  costs greater  than  $1.8  trillion  since  the  year  2000.1  

Forecasting  these  events is important  to  better  enable  disaster  mitigation  and  resilience,  but  is 

often  difficult  to  do  accurately due  to  the  rare  and  complex nature  of  these  events.2,3   

One  challenge  of  hazard  forecasting  relates to  the  heterogeneity of  environmental  

systems.  It  is difficult  to  predict  the  frequency and  strength  of  hazards because  they are  

functions of  the  interaction  of  multiple  natural  phenomena;  they often  vary in  space  in  different  

regions of  the  planet;  and  they can  change  over  time  (especially as climate  change  and  

anthropogenic impacts accelerate).2,4  Perhaps resulting  from  this heterogeneity,  many ways of  

issuing  environmental  forecasts have  been  developed  ranging  from  completely non-technical  

(such  as using  animal  behavior  to  forecast  earthquakes5)  to  entirely computational  (such  as 

global  climate  models that  require  the  use  of  supercomputers).   

Another  barrier  to  effective  forecasting  relates to  the  nature  of  the  data  representing  

environmental  systems which  are  often  available  from  multiple  sources in  multiple  spatial  and  

temporal  resolutions;  noisy and  sparse  due  to  the  difficulty in  data  collection  (particularly for  

biological  parameters);  and  skewed  due  to  the  rarity of  events.  Data-driven  techniques - which  

take  advantage  of  statistical  and  algorithmical  relationships amongst  datasets and  are  the  

primary tools of  the  emerging  field  of  environmental  data  science  - can  be  effective  in  extracting  

meaning  from  complex data.4  Particularly,  environmental  data  science  is well-equipped  to  

leverage  the  increasingly large  and  more  real-time  environmental  datasets that  are  available  

from  sources such  as remote  sensing  platforms,6,7  ecosystem  monitoring  stations,8,9  individual  
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60 sampling  campaigns,  and  model  output.10,11  As a  result,  data-driven  hazard  forecasting  

applications previously documented  include  predicting  flooding,12  air  pollution,13  foreign  species 

invasion,14  and  harmful  algal  blooms.15,16   

However,  new  and  enhanced  methodologies are  still  needed  for  data-driven  

environmental  forecasts to  have  broad  application.  This is partially due  to  the  unique  complexity 

of  environmental  data  which  provides a  barrier  to  using  methods that  have  been  successful  in  

forecasting  applications in  other  fields.  For  example,  time  series analysis techniques such  as 

ARIMA  have  been  successfully used  for  predicting  financial  outcomes but  can  break down  when  

applied  to  environmental  time  series that  are  heavily-skewed  (as is the  case  with  rare  event  

prediction)  or  unevenly spaced.17  Developing  new  methods for  specific environmental  data  

science  problems will  improve  the  translation  of  complex datasets and  subsequently improve  

decision  support  for  environmental  management.4  

A  specific opportunity to  enhance  environmental  data  science  methodology is in  the  

management  of  recreational  beach  water  quality.  At  beaches around  the  planet,  fecal  indicator  

bacteria  (FIB)  - organisms that  can  be  indicative  of  the  presence  of  enteric pathogens - are  

monitored  in  water.  However,  FIB  monitoring  is often  conducted  infrequently (e.g.  weekly or  less 

often)18  and  relies on  laboratory methods that  delay result  availability 24-48  hours;  thus,  beach  

management  decisions and  subsequent  public notification  often  do  not  reflect  current  water  

quality conditions.19  To  augment  monitoring,  data-driven  models have  been  used  previously to  

predict  FIB  standard  exceedances at  beaches.20–22  FIB  models are  often  regression- or  machine  

learning-based,  and  use  environmental  observations  like  tide,  wave,  and  meteorological  

parameters as inputs to   make   predictions.   Models can   be   more   sensitive   than   the   ‘persistence   

method’   of   using   a   single   day-old  measurement  to  represent  water  quality23,24  and  can  provide  

more  frequent  information  to  beach  managers and  beachgoers than  sampling  alone.25   

Though   often   referred   to   as providing   water   quality ‘forecasts’,26–28  most  models are  

designed   to   issue   FIB   ‘nowcasts’;   technically,   model   outputs are   near   real-time  predictions of  
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86 current  water  quality conditions rather  than  true  forecasts which  are  predictions of  future  

conditions.  Nowcasts have  limited  use  because  in  cases where  water  quality is predicted  to  be  

poor,  same-day predictions give  managers only a  few  hours to  conduct  adaptive  sampling  and  

make  beach  management  decisions.  Water  quality forecasts –   or  predictions of  water  quality 

issued  one  or  more  days in  advance  –   could  alleviate  these  limitations,  allowing  for  more  

effective  beach  management  from  local  agencies as  well  as providing  beachgoers more  time  to  

decide  where  to  recreate  based  on  water  quality.  

Few  studies have  investigated  FIB  forecasting.  Frick  et  al.29  converted  a  linear  

regression-based  nowcast  model  developed  for  Lake  Erie  to  provide  forecasts for  one  day in  the  

future.  To  do  this,  they substituted  observed  model  variables with  their  forecast  versions as 

model  inputs.  Zhang  et  al.30  used  wavelet  analysis and  neural  networks to  forecast  FIB  in  Lake  

Michigan  up  to  24  hours in  advance  without  using  independent  environmental  variables.  Both  

studies focus on  lacustrine  beaches with  forecast  lead  times (the  hours or  days between  when  a  

prediction  is issued  and  when  it  is valid)  of  one  day or  less.  While  there  are  examples of  

forecasting  other  beach  parameters days in  advance  (such  as tide  level,  harmful  algal  blooms,  

and  air  quality),7,31,32  to  our  knowledge  no  work exists testing  FIB  forecasts at  marine  beaches.  

The  objective  of  the  present  study is to  develop  and  test  a  data-driven  framework that  

can  effectively forecast  FIB  at  marine  beaches up  to  three  days in  advance.  Our  approach  is 

based  on  methodology that  is commonly applied  in  the  development  of  nowcast  models,  

including   using   a   standard   data   science   ‘pipeline’   (or   workflow)   to   develop   models and   applying   

well-studied  regression  and  machine  learning  model  types.  However,  a  key difference  between  

nowcast  methodology and  our  framework is that  model  inputs are  intentionally limited  to  

environmental  observations made  at  least  the  number  of  days in  advance  of  the  time  for  which  

the  FIB  forecast  is made.  This means that  as forecast  lead  time  increases,  the  larger  the  gap  in  

time  between  FIB  and  the  observed  model  inputs.  This approach  is supported  by knowledge  
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111 that  predictive  information  can  be  found  in  environmental  observation  temporally lagged  from  an  

FIB  observation.33,34  

Using  forecasting  datasets composed  of  historical  observations of  FIB  and  

environmental  data,  we  apply a  custom  data  science  workflow  to  develop  a  series of  machine  

learning   models for   two   California   marine   beaches.   We   evaluate   the   models’   ability to   forecast   

FIB  standard  exceedances for  one,  two,  and  three  days lead  time,  and  assess the  most  

common  environmental  parameters for  each  time  step.  We  compare  forecast  performance  to  

that  of  both  naive  models and  of  baseline  nowcast  models.  The  results of  this work will  allow  

practitioners to  extend  beyond  nowcasting  applications to  make  FIB  predictions days in  

advance.  Further,  this work serves as a  foundation  that  can  built  upon  with  future  work to  

improve  forecasting  of  poor  beach  water  quality as well  other  environmental  hazards.  
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122 Methodology  

Study  Sites  

Two  California  marine  beaches were  chosen  for  the  study:  Cowell  Beach  (CB,  36.962  N,  

122.023  W)  and  Huntington  State  Beach  (HSB,  33.633  N,  117.966  W)  (Figure  S1).  Both  sites 

have  a  Mediterranean  climate  in  which  most  precipitation  events  occur  between  the  months of  

November  and  March.  Sites were  selected  based  on  popularity with  beachgoers,  historical  data  

availability,  and  differences in  geomorphology,  climate,  and  water  quality conditions;  a  detailed  

description  of  the  sites  including  notes on  recent  infrastructure  changes  can  be  found  in  the  

Supporting  Information.   

 

FIB and  Environmental  Data  

FIB Data  

FIB  monitoring  is conducted  year-round  at  both  sites;  a  description  of  monitoring  methodology 

can  be  found  in  the  SI.  Escherichia  coli  (EC)  and  Enterococcus (ENT)  data  were  collated  from  a  
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136 State  of  California  online  database  (http://ceden.org/index.shtml).  Samples collected  during  the  

summer  months (April-October)  between  2007  and  2021  were  used  in  this analysis.  Beach  

sampling  occurred  approximately weekly at  CB  and  twice  weekly at  HSB;  no  significant  serial  

correlation  was found  in  these  datasets.  Samples measured  below  the  limit  of  quantification  

(LOQ)  were  flagged  and  assigned  a  value  of  ½  the  LOQ.  FIB  samples with  concentration  in  

exceedance   of   the   State   of   California’s regulatory standard   (104   and   400   CFU/100   ml   for   EC   

and  ENT samples,  respectively)35  were  also  flagged.   

 

Environmental  Data  

Historical  environmental  data  were  compiled  for  each  beach  from  internet  sources through  

manual  download  or  API  access;  specific station  details  (including  the  sampling  interval  for  each  

data  type)  are  provided  in  Table  S1.  Oceanic data  include  tide,  wave,  and  water  quality 

parameters.  Tide  level  predictions based  on  harmonic constants were  available  from  the  

National  Oceanic and  Atmospheric Administration  (NOAA).  We  used  tidal  predictions as 

opposed  to  observations because  tides can  be  forecast  accurately years in  advance  and  NOAA  

maintains a  historical  archive  of  tide  predictions (which  is required  for  forecast  model  training,  

see  below)36.  Wave  parameters including  significant  wave  height,  average  wave  period,  and  

dominant  wave  period  were  measured  by regional  buoys maintained  by the  Coastal  Data  

Information  Program  (CDIP).  These  buoys also  collected  water  temperature  data.  Other  water  

quality parameters such  as chlorophyll,  turbidity,  dissolved  oxygen,  pH,  salinity,  and  conductivity 

were  measured  by automated  pier-based  stations maintained  by the  Central  and  Northern  

California  Ocean  Observing  System  (CenCOOS).  

Meteorological  data  include  air  and  dew  point  temperatures;  wind  speed  and  directions;  

precipitation  totals;  and  solar  irradiance.  These  parameters were  aggregated  from  multiple  

meteorological  stations maintained  by the  National  Climatic Data  Center  (NCDC),  the  California  

Irrigation  Management  Information  System  (CIMIS),  and  CenCOOS.  Stream  discharge  data  
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162 collected  from  automated  USGS  gauges located  in  the  San  Lorenzo  River  and  Santa  Ana  River  

were  used  in  CB  and  HSB  analyses,  respectively.  Finally,  alongshore  and  crosshore  current  

velocities measured  by high-frequency radar  maintained  by CenCOOS  were  used  in  HSB  

analyses.  All  data  sources provide  quality assurance  information  on  their  websites to  verify data  

veracity.   
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168 Forecast  Modeling  

Overview  

We  developed  a  suite  of  models that  can  forecast  up  to  three  days in  advance  whether  FIB  

concentrations at  a  given  beach  will  exceed  regulatory standards based  on  the  input  of  

environmental  variables.  Rather  than  a  single  model  that  could  at  once  forecast  FIB  at  all  times 

in  the  future,  FIB  forecasts were  made  by three  individual  models each  developed  to  predict  FIB  

on  a  specific day in  the  future.  The  following  terminology and  notation  will  be  used  henceforth  to  

describe  forecast  models.  The  time  upon  which  a  prediction  is output  by a  model  is the  forecast  

issue  time,  while  the  time  in  the  future  for  which  a  forecast  is made  is the  forecast  validity time. 

The  difference  between  the  forecast  issue  and  validity times is the  forecast  lead  time.  In  this 

study,  the  forecast  validity time  (i.e.  the  time  for  which  a  forecast  is made)  will  be  assigned  a  

timestamp  t  =  0.  It  then  follows that  a  forecast  of  lead  time  L  is issued  by the  model  on  t  =  - L 

where  the  units of  L  are  days.  This frame  of  reference  enables consistency when  organizing  

modeling  datasets for  models of  varying  lead  times,  and  is equivalent  to  a  frame  of  reference  

where  forecast  issuance  (rather  than  validity)  occurs  at  t  =  0.  For  example,  using  variables 

observed  prior  to  t  =  -3  to  issue  a  forecast  for  t  =  0  (i.e.  a  three  day lead  time)  is equivalent  to  a  

forecast  valid  at  t  =  3  issued  by a  model  with  input  variables observed  prior  to  t  =  0.  

Model  development  included  aggregating  FIB  and  environmental  variables into  bulk 

datasets,  pre-processing  bulk modeling  datasets by reducing  dimensionality and  removing  

missing  values;  partitioning  data  into  training  and  test  datasets;  selecting  the  final  model  
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188 variables;  and  fitting  and  evaluating  the  predictive  model  (Figure  1).  This process was followed  

for  each  model  developed  for  a  given  beach,  FIB  type,  data  partition,  forecast  lead  time,  and  

model  type.   Model  development  was performed  using  the  Python  programming  language  and  

specifically using  the  scikit-learn  machine  learning  package.37  
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193 

 

Figure  1: Flow diagram of the  development of an individual forecast model. Procedure is repeated for  

each beach, FIB type, data partition, lead  time, and model type.  194 

195 

196 Modeling  Datasets  

Bulk modeling  datasets for  a  given  beach  were  composed  of  historical  FIB  observations 

(dependent  variable)  and  environmental  (independent)  variables.  Environmental  variables were  

created  by time  indexing  raw  data  to  each  FIB  observation  at  a  given  beach.  Because  the  

temporal  resolution  of  the  FIB  datasets are  on  the  order  of  days,  raw  environmental  data  with  

higher  frequency sampling  resolution  were  transformed  into  bulk daily statistics (e.g.  daily 
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202 maximum  tide  level,  daily mean  significant  wave  height,  the  sum  of  precipitation  over  the  

previous seven  days).  Categorical  variables were  created  by grouping  by environmental  

condition  on  a  given  day.  Such  categorizations include  whether  there  was spring  or  neap  tide;  

during  periods of  discrete  wind  and  current  directions (offshore  or  onshore  and  upshore  or  

downshore);  and  when  wind  speed,  significant  wave  height,  dominant  wave  period,  chlorophyll,  

and  turbidity were  above  or  below  their  historical  75th  percentile  (which  served  to  indicate  

relatively elevated  levels of  the  condition).  

Temporally lagged  variables were  created  by employing  a  temporal  shift  of  up  to  7  days 

between  environmental  variables and  FIB  observations.  Examples include  mean  air  

temperature  observed  two  days prior,  dichotomized  wind  conditions observed  four  days prior,  

and  total  precipitation  observed  between  three  and  seven  days prior.  While  lagged  variables 

have  been  shown  to  significantly improve  the  predictive  performance  of  FIB  nowcast  models,33  

they are  necessary in  this work primarily because  of  operational  constraints specific to  

forecasting;  that  is,  only environmental  observations  made  on  or  before  the  forecast  issuance  

time  (which  lags from  the  forecast  validity time)  can  be  used.  The  exception  to  this were  tidal  

parameters.  The  instantaneous tide  level  at  the  time  of  FIB  sampling  was also  used  as a  model  

variable  because  this variable  is available  for  operational  FIB  forecasting  as tide  data  were  

forecasts themselves.  

In  addition  to  the  aforementioned  environmental  categorizations,  we  created  variables 

that  indicated  the  month  of  sample  collection  and  whether  samples were  collected  on  

weekends.  Precipitation,  streamflow,  chlorophyll,  and  turbidity parameters were  log10+1  

transformed  (i.e.  log10-transformed  after  adding  1)  to  reduce  skew.  Finally,  we  chose  not  to  

include  autoregressive  FIB  variables (e.g.  the  most  recent  FIB  measurement)  as independent  

variables due  to  the  unevenly spaced  FIB  time  series available  at  the  study beaches.  A  

maximum  of  266  environmental  variables spanning  seven  types (meteorological,  tide,  wave,  

water  quality,  streamflow,  current,  and  date)  were  included  in  bulk modeling  datasets (Table  
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228 S2.1  - 2.7).  It  should  again  be  emphasized  that  all  environmental  variables except  for  tide  

variables were  composed  of  measured  data  as opposed  to  forecast  (or  modeled)  data;  this is 

primarily due  to  poor  availability of  forecast  environmental  data.   All  data  used  in  this study are  

available  in  the  Stanford  Digital  Repository and  can  be  accessed  at  

https://purl.stanford.edu/nw799cp6263.38  

The  bulk datasets represent  an  aggregation  of  data  from  multiple  sources  and  a  range  of  

temporal  lags,  and  thus often  contained  hundreds of  modeling  variables and  included  missing  

data  points.  Pre-processing  was required  prior  to  individual  model  development  in  order  to  

reduce  the  likelihood  of  overfitting  (which  can  occur  when  training  models on  a  large  number  of  

variables)  and  to  yield  clean  modeling  datasets.   

Dataset  dimensionality was performed  by first  removing  irrelevant  variables from  the  

bulk modeling  datasets.  This included  zero-variance  variables,  variables related  to  observations 

of  FIB  of  the  other  type  (i.e.  EC  and  ENT were  modeled  independently),  and  variables (except  

for  tidal)  representing  data  observed  on  the  same  day of  an  FIB  observation  as they are  often  

not  available  for  use  operationally in  a  forecast  model.  To  further  reduce  dataset  dimensionality 

as well  as multicollinearity,  highly correlated  environmental  variables (Spearman  Rank 

Correlation  >  0.9)  were  identified  and  the  variable  of  the  pair  with  the  lowest  magnitude  

Spearman  correlation  with  FIB  concentrations were  dropped  from  the  dataset.  Remaining  

variables with  a  number  of  missing  data  points greater  than  15% of  the  total  length  of  the  

dataset  were  dropped.  A  threshold  of  15% was selected  because  we  found  it  balanced  dataset  

length  (i.e.  number  of  observations available  for  model  training  and  testing)  and  maximizing  the  

total  number  of  the  variables available  for  inclusion  in  models.  Finally,  if  missing  values 

remained,  the  entire  record  for  those  time  points (i.e.  the  FIB  observation  and  the  environmental  

variables indexed  to  it)  was omitted  from  the  modeling  data  set.  We  chose  not  to  employ 

imputation  because  there  were  often  large  gaps in  the  environmental  variable  datasets (i.e.  

spanning  seasons)  in  which  imputation  could  not  be  useful.  Further,  dropping  missing  values did  
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254 not  significantly reduce  the  number  of  data  points available  for  model  training  and  testing  (i.e.  at  

least  85% of  datapoints maintained.  These  steps yielded  a  clean  modeling  dataset  specific to  a  

given  beach  and  FIB  type  that  enabled  consistency when  developing  models of  varying  lead  

times.   

 

Data  Partitioning  

Modeling  datasets were  partitioned  into  training  and  test  datasets.  Six consecutive  summer  

seasons of  data  were  included  in  the  training  datasets which  were  used  to  select  final  modeling  

variables and  parameters and  fit  models.  The  subsequent  2  seasons of  data  composed  the  test  

datasets which  were  used  to  evaluate  predictive  performance  of  the  forecasts.  

 Multiple  data  partitions were  created  using  a  sliding  window  with  a  step  of  one  year  over  

the  range  of  the  entire  modeling  dataset.  For  example,  if  one  partition  included  a  training  

dataset  with  data  collected  between  2007  - 2012  and  a  test  dataset  with  data  collected  during  

2013  and  2014,  the  following  partition  would  entail  a  training  dataset  with  data  collected  

between  2008  - 2013  and  a  test  dataset  with  data  collected  during  2014  and  2015.  Thus,  8  total  

data  partitions per  modeling  dataset  were  available.   

Environmental  variables were  subsequently standardized  in  order  to  optimize  model  

training.   Variables were   first   centered   by subtracting   the   variable’s mean   value   and   

subsequently scaled   by dividing   by the   variable’s variance.   The   means and   variances from   the   

partition’s training   dataset   were   used   to   standardize   the   data   in   both   the   training   and   test   

datasets.   

 

Forecast  Model  Training  

The  data  of  each  partition  were  subsequently used  to  develop  models for  all  three  forecast  lead  

times as well  as baseline  nowcast  models.  Prior  to  training  forecast  models of  a  given  lead  time,  

a  final  removal  of  environmental  variables (with  the  exception  of  tide  variables  which  are  
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280 technically available  for  all  lead  times  because  they are  composed  of  forecast  data)  was 

conducted  such  that  the  models were  fit  only on  data  available  for  operational  use.  For  example,  

total  observed  precipitation  on  t  =  -2  is available  for  use  in  nowcast  (lead  time  of  0)  and  1-day 

forecast  models,  but  is operationally unavailable  for  2- and  3-day forecast  models.  This final  

removal  led  to  an  increasingly smaller  number  of  variables available  for  model  training  as lead  

time  increased.   

Models were  trained  as binary classifiers.  Predictions were  made  in  two-steps:  first  

outputting  the  probability of  whether  FIB  concentrations were  in  exceedance  of  the  water  quality 

regulatory standard,  and  then  converting  that  probability to  either  the  positive  class (i.e.  FIB  

standard   exceedance)   or   negative   class (i.e.   attainment   or   ‘non-exceedance’   of   FIB   standard)   

based  on  if  it  was above  or  equal  to  or  below  the  decision  threshold  probability,  respectively.  

The  default  decision  threshold  probability used  was 0.5.  

We  trained  four  models for  each  forecast  lead  time  using  the  following  statistical  and  

machine  learning  model  types:  binary logistic regression,  support  vector  machine,  random  

forest,  and  gradient  boosted  machine.  Each  model  type  is available  in  the  scikit-learn  package  

in  Python,  and  has been  used  previously to  predict  FIB  or  other  water  quality parameters.39–42  

Binary logistic regression  (BLR)  is a  statistical  model  that  has an   interpretable  relationship  

between   environmental   variables and   predicted   FIB.   We   used   a   BLR   model   with   an   ‘elastic net’   

penalty.  Support  vector  machine  (SVM)  is a  model  that  employs  kernel  functions which  

nonlinearly map  data  such  that  the  hyperplane  that  separates predicted  classes is optimized.  

Random  forest  (RF)  is an  ensemble  model  where  the  prediction  is an  aggregate  of  the  

predictions of   multiple   decision   ‘trees’.    Gradient   boosted   machine   (GBM)   is similar   to   RF in   that   

multiple   weak estimators are   fit   as an   ensemble;   however,   each   subsequent   tree   fit   is ‘boosted’   

by learning  the  error  resulting  from  the  previous.  Default  model  parameters are  listed  in  Table  

S3.  
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305 Models were  trained  using  a  process that  used  cross-validation  to  first  select  final  model  

variables from  the  full  training  dataset  and  then  optimize  model  parameters from  the  training  

datasets.  Balanced  accuracy (the  mean  of  model  sensitivity and  specificity,  defined  below)  was 

used  as the  cross-validation  score  metric in  all  steps  of  this process.  Variable  selection  involved  

a  two-step  process.  The  first  step  further  reduced  the  dimension  of  the  training  dataset  by using  

the  permutation  feature  importance  algorithm  in  the  scikit-learn  package.37  The  permutation  

feature  importance  (PFI)  of  a  given  variable  is indicative  of  how  dependent  a  model  is on  that  

variable  and  is calculated  as the  change  in  model  score  metric upon  training  a  model  after  

randomly shuffling   the   variable’s data.   Each   variable   was shuffled   five   times,   and   the   mean   PFI 

resulting  from  the  shuffling  was calculated.  Variables with  mean  PFI less than  1.5  times the  

grand  mean  PFI  of  the  entire  variable  set  were  dropped  from  the  training  dataset.  A  value  of  1.5  

was selected  because  it  was found  to  balance  model  training  time  and  variety for  subsequent  

variable  selection.43   

 The  second  step  in  variable  selection  was a  recursive  feature  elimination  algorithm  with  

cross-validation.   The   training   dataset   was first   split   into   five   ‘folds’   or   subsets,   four   of   which   were   

used  to  fit  submodels and  the  remaining  used  to  cross-validate   the   submodel’s score.   In   a   

stepwise  manner,  the  algorithm  dropped  the  one  variable  from  the  dataset  such  that  the  

submodel  score  (i.e.  balanced  accuracy)  on  the  validation  data  is maximized.  Variable  removal  

was repeated  until  the  minimum  number  of  submodel  variables remained  (for  this study,  we  set  

this parameter  to  3).  The  entire  stepwise  process was repeated  five  times using  all  

combinations of  data  folds for  submodel  fitting  and  validation.  Upon  completion,  the  set  of  

variables corresponding  to  the  highest  average  cross-validation  score  was selected  as the  final  

modeling  variable  set.  

 A  grid  search  algorithm  with  cross-validation  was then  used  to  optimize  the  model  

parameters specific to  the  given  model  type.  Similarly to  recursive  feature  elimination,  grid  

search  involved  splitting  the  training  dataset  into  five  folds,  fitting  submodels with  varying  model  

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

15 

https://www.zotero.org/google-docs/?hp1dWJ
https://www.zotero.org/google-docs/?abm4Ty


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

331 parameters on  four  folds,  and  evaluating  the  model  score  on  the  fifth.  The  procedure  was 

repeated  until  all  combinations of  model  parameters were  exhausted.  The  parameters used  in  

the  search  for  each  model  type  are  listed  in  Table  S3.  The  entire  parameter  search  was 

repeated  a  total  of  five  times exhausting  all  combinations of  data  folds for  submodel  fitting  and  

validation.  The  model  with  parameters that  maximized  the  average  cross-validation  score  

averaged  over  the  submodels  was used  as the  final  model.   

 

Forecast  Evaluation  

The  test  datasets were  used  to  evaluate  the  predictive  performance  of  models.  This was done  

by running  models to  output  forecasts of  whether  FIB  exceeded  regulatory standards,  and  

comparing  predictions to  FIB  measurements.  Three  performance  metrics were  used  to  evaluate  

models:  sensitivity,  specificity,  and  area  under  the  receiver  operating  characteristic curve.  

Sensitivity  is defined  as the  proportion  of  positive  values (i.e.  FIB  standard  exceedances)  

correctly predicted  by the  model;  models with  higher  sensitivity are  more  health  protective.  

Specificity  is defined  as the  proportion  of  negative  values (i.e.  FIB  in  attainment  of  the  standard)  

correctly predicted.  It  is valuable  to  consider  both  sensitivity and  specificity because  beach  

managers typically desire  models to  be  effective  in  predicting  both  days of  FIB  standard  

exceedances and  attainment.  Area  under  the  receiver  operating  characteristic curve  (AUC)  is a  

bulk metric that  integrates sensitivity and  specificity across a  range  of  potential  decision  

threshold  probabilities,  and  is less biased  than  those  metrics when  comparing  performance  

between  models tested  on  datasets with  differing  proportions of  FIB  standard  exceedances. 21,44  

AUC   ranges from   0   to   1,   with   a   value   of   greater   than   0.5   indicating   that   a   model’s predictive   

ability is greater  than  guessing  at  random  and  a  value  of  1  indicating  perfect  delineation  of  

positive  and  negative  classes.  Aggregate  performance  was calculated  across all  developed  

models,  by individual  model  type,  and  for  all  models developed  for  a  given  beach  and  FIB  type.  
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356 Model  performance  was contextualized  by comparing  these  metrics to  those  calculated  

for   the   ‘persistence   method’,   a   naive   model   which   assumes the   forecast   FIB   condition   at   a   

beach  is equivalent  to  that  indicated  by the  most  recently collected  observation  prior  to  forecast  

issuance.  The  persistence  method  is the  means by which  beach  management  in  California  is 

currently conducted,  and  thus serves as a  practical  baseline  to  evaluate  model  performance.   

Finally,  performance  metrics for  forecast  models were  also  compared  to  those  calculated  

for  nowcast  models (lead  time  of  0)  developed  for  the  same  data  partition  and  model  type.  This 

allowed  for  evaluation  on  how  forecasts of  increasing  lead  time  compared  to  the  nowcast  

baseline  on  the  same  data.  
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366 Results  

FIB and  Environmental  Data  

Bulk modeling  datasets for  each  beach  were  composed  of  FIB  and  environmental  data  collected  

over  15  summer  seasons (April  through  October  from  2007  - 2021)  (Table  S4).  HSB  had  a  

higher  proportion  of  samples measured  below  the  LOQ  (66% and  61% of  EC  and  ENT samples,  

respectively)  than  CB  (8% and  43%).  Of  the  two  FIB  types considered  in  this study,  EC  

exceeded  the  regulatory standard  most  frequently at  CB  (19% of  all  samples)  while  ENT 

exceeded  most  frequently at  HSB  (8%).   

 

Forecast  Model  Development  

The  proportion  of  FIB  exceedances varied  between  training  and  test  datasets within  partitions 

and  between  individual  partitions,  reflecting  changing  FIB  distributions over  the  years (Table  

S5).  The  average  proportion  of  FIB  exceedances at  CB  (13% and  11% for  EC  and  ENT test  

datasets,  respectively)  was higher  than  that  for  HSB  (4% and  8%).  
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380 Across all  combinations of  beach,  FIB  type,  dataset  partition,  forecast  lead  time,  and  

model  type,  we  developed  384  total  forecast  models.  An  additional  128  nowcast  models were  

developed  for  baseline  comparison.   

A  total  of  130  unique  variables across all  models trained  were  selected  through  the  

variable  selection  process.  The  most  common  variable  types selected  in  fitting  forecast  models 

were  meteorological  (appearing  in  97% of  models),  tide  (91%),  and  wave  (83%)  variables,  while  

currents and  water  quality variables were  the  least  common  (appearing  in  0% and  17% of  

models,  likely owing  to  the  poor  availability of  their  data).  Instantaneous tide  level  was the  most  

common  individual  variable  selected,  appearing  in  43% of  models.  The  most  frequently selected  

variables for  models developed  for  each  beach  and  FIB  are  listed  in  Table  S6.  

The  number  of  modeling  variables selected  differed  by model  type  (Figure  S2).  RF and  

GBM  tended  to  have  fewer  variables (mean  of  7  and  9,  respectively)  than  SVM  and  BLR  (mean  

of  11  and  12).  Across all  forecast  models,  the  mean  number  of  selected  variables in  a  model  

was 10  and  the  maximum  was 38.  The  number  of  variables in  individual  forecast  models tended  

to  decrease  with  increasing  model  lead  time,  mostly due  to  the  increasingly limited  availability of  

variables to  select  from.  
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397 Forecast  Model  Performance  

Overall  Performance  

FIB  forecasts were  made  by running  models on  the  test  datasets and  were  compared  to  

observations in  order  to  evaluate  predictive  performance.  Across all  forecast  models,  median  

sensitivity was 0.00  (interquartile  range  (IQR)  0.00  - 0.31),  median  specificity was 0.92  (IQR  

0.77  - 0.97),  and  median  AUC  was 0.58  (IQR  0.50  - 0.66).  The  majority of  forecast  models we  

developed  (76%)  had  AUC  values greater  than  0.5  (i.e.  more  informative  than  random  

guessing).   Comparatively,   the   persistence   method’s median   sensitivity was 0.00   (IQR   0.00   - 

0.15),  median  specificity was 0.95  (IQR  0.89  - 0.98),  and  median  AUC  was 0.50  (IQR  0.48  - 
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406 0.51).  Further,  the  persistence  method  had  32% of  instances with  AUC  greater  than  0.5.  At  this 

aggregate  level,  forecast  models do  not  appear  to  perform  well  in  terms of  sensitivity and  

specificity compared  to  the  persistence  model;  however,  we  next  disaggregate  the  results to  

investigate  if  specific models perform  well.   

Metrics grouped  by individual  model  type  showed  that  certain  model  types tended  to  

outperform  the  persistence  model  (Figure  2,  Table  S7).  Across all  beaches,  FIB  types,  data  

partitions,  and  lead  time,  the  most  sensitive  model  type  was BLR  (median  of  0.40,  IQR  0.22  - 

0.56)  while  the  least  sensitive  was SVM  (0.0,  IQR  0.0  - 0.0).  Specificity was highest  for  SVM  

models (1.00,  IQR  1.00- 1.00),  because  all  predictions were   for  the  negative  class.  The  next  

most  specific model  type  was GBM  (0.95,  IQR  0.92  - 0.97);  the  lowest  specificities came  from  

BLR  models (0.69,  IQR  0.62  - 0.76).  AUC  was highest  for  RF (0.60,  IQR  0.54  - 0.68)  and  lowest  

for  SVM  (0.56,  IQR  0.48  - 0.65).  BLR  and  RF were  the  model  types with  AUC  most  frequently 

greater  than  0.5  (80% and  79% of  models,  respectively),  while  SVM  was the  least  frequent  

(68%).   No  single  model  type  was superior  in  all  of  the  evaluation  metrics,  yet  depending  on  the  

performance  criteria  of  the  end  user  (i.e.  required  sensitivity  or  specificity),  each  can  be  an  

effective  model  type  for  operational  forecasting.   
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Figure  2: Predictive performance  of forecast  models  on test datasets. Model sensitivities, specificities,  

and AUC values are plotted in the left, middle, and right subplots, respectively. The dotted line in the AUC  424 
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subplot is set at a value of 0.5 for reference. Performance metrics are categorized by forecast lead time 

(x-axis). The lead time zero boxplots represent the results from the baseline nowcast models. Color 

indicates model type; PER corresponds to the persistence method. The middle line in the boxplots 

represents the median; the upper and lower edges of the boxes represent the 75th and 25th quantiles, 

respectively. The whiskers extend to 1.5 times the interquartile range (75th quartile−25th quartile). 

Forecast models are developed specific to a given beach and FIB type, so we next 

aggregate performance metrics as such and show that forecast models perform well relative to 

the persistence method for beach management. For brevity, we present results below for EC at 

CB and ENT at HSB, yet metrics for all beach and FIB type groupings are listed in Table S8. For 

EC at CB, median sensitivity was 0.12 (IQR 0.0 - 0.34) for forecast models compared to 0.11 

(0.0 - 0.26) for the persistence method; median specificity was 0.91 (0.71 - 0.98) for forecast 

models and 0.90 (0.85 - 0.95) for the persistence method; and median AUC was 0.58 (0.48 -

0.65) for models and 0.51 (0.47-0.58) for the persistence method. For ENT at HSB, median 

sensitivity was 0.10 (IQR 0.0 - 0.41) compared to 0.0 (0.0 - 0.0) for the persistence method; 

median specificity was 0.92 (0.77 - 0.99) for models and 0.97 (0.94 - 1.0) for the persistence 

method; and median AUC was 0.62 (0.56 - 0.70) and 0.50 (0.48-0.50) for the persistence 

method. 

Comparison to Nowcast Models 

We developed 128 nowcast models using the same methodology described above for forecast 

models, but allowing for the inclusion of the most recently observed variables (i.e. from one day 

previous of prediction validity). Compared to persistence method predictions with a lead time of 

0, nowcast models had higher median sensitivity, specificity, and AUC (Table S9). 

Overall, average predictive performance of nowcast models was similar to those of 

forecast models of all three forecast lead times. We assessed how performance changed 

between individual models of a given lead time and their associated baseline nowcast model (N 
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451 =  128  model  comparisons per  lead  time).  Model  sensitivity decreased  in  a  minority of  forecast  

models (24%,  26%,  and  27% for  1,  2,  and  3  days lead  time,  respectively)  relative  to  the  

associated  nowcast  model; forecast  model  sensitivity remained  unchanged  relative  to  nowcast  

for  approximately half  of  forecast  models of  each  lead  time  (likely an  artifact  of  many models 

having  sensitivities of  0.0).  Model  specificity decreased  in  40%,  45%,  and  45% of  forecast  

models relative  to  the  associated  nowcast  model  for  1,  2,  and  3  days lead  time,  respectively,  

while  it  increased  in  approximately one  third  of  forecast  models of  each  lead  time  respectively.  

Thus the  median  difference  in  specificity between  forecast  and  nowcast  models was 0.0  for  all  

three  lead  times.  Finally,  forecast  model  AUC  decreased  in  59%,  57%,  and  61% relative  to  

nowcast  models for  1,  2,  and  3  days lead  time,  respectively;  the  median  change  in  AUC  was 

small  (0.02,  0.02,  and  0.04  for  one,  two,  and  three  days lead  time,  respectively).  Cumulatively,  

these  results suggest  that  a  comparable  quality of  information  can  be  provided  by forecast  

models as from  their  baseline  nowcast  models.  
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465 Discussion  

We  established  an  automated  framework that  can  be  used  to  develop  data-driven  models that  

forecast  FIB  at  marine  beaches for  up  to  three  days lead  time.  Our  methodology extends 

beyond  that  used  to  develop  FIB  nowcast  models by  leveraging  temporally-lagged  

environmental  observations and  multiple  statistical  and  machine  learning  model  types.  We  used  

the  framework to  train  nearly 400  forecast  models for  two  California  beaches and  tested  their  

predictions against  FIB  observations.  To  our  knowledge,  this is the  first  demonstration  that  FIB  

levels at  marine  beaches can  be  predicted  days in  advance.  

 Our  results show  that  forecast  models can  provide  enhanced  beach  water  quality 

information  beyond  single  past  observations alone  (i.e.  the  persistence  method).  FIB  

concentrations tend   to   exhibit   ‘patchy’   time   series and   can   be   heavily skewed,   making   them   
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476 difficult  to  predict  with  autoregressive  techniques alone.  Predictive  models instead  rely on  

observed  environmental  parameters which  can  be  monitored  more  frequently than  FIB  and  

represent  the  physical,  chemical  and  biological  processes that  control  FIB  fate  and  transport  in  

the  environment.  Moreover,  the  statistical  and  machine  learning  models we  considered  in  the  

framework have  the  potential  to  capture  nonlinear  relationships between  FIB  and  environmental  

drivers.  

An  underlying  design  component  specific to  the  forecasting  framework is to  utilize  the  

knowledge  that  there  is often  a  delayed  effect  between  a  given  environmental  driver  (e.g.  

precipitation,  wind-driven  flow)  and  the  expressed  effect  in  FIB  fate;  this is represented  in  our  

framework through  the  use  of  lagged  observed  environmental  variables.  For  example,  

precipitation  observed  six days prior  was often  included  as a  model  variable,  perhaps due  to  a  

six day gap  between  rainfall  and  contaminated  runoff  reaching  the  study site.  Site-specific 

studies devoted  to  exploring  FIB  fate  and  transport  mechanisms would  be  needed  to  verify this.  

However,  the  effect  of  some  environmental  mechanisms on  FIB  fate  can  be  more  

immediate  (e.g.  water  temperature,  solar  irradiance).45–47  Thus the  presence  of  lagged  

environmental  variables in  models (which  was more  common  as forecast  lead  time  increased)  

may be  more  related  to  variable  autocorrelation  than  a  delayed  effect  on  FIB.  This may explain  

why solar  irradiance  observed  four  days prior  was a  frequently included  parameter  in  models;  if  

a  parameter  observed  on  or  prior  to  forecast  issuance  is strongly correlated  with  its observation  

on  the  time  of  forecast  validity t  =  L,  then  the  lagged  parameter  acts more  like  a  forecast  

variable.   

It  is interesting  to  note  that  instantaneous tide  level  - the  single  forecast  variable  used  in  

this study - was the  most  often  selected  variable  in  FIB  forecast  models.  Tide  level  is regarded  

as a  parameter  that  can  be  forecast  with  high  accuracy,  and  it  has also  been  shown  to  be  

important  in  nowcast  models developed  previously at  the  study sites.25,43  Future  studies could  

examine  the  accuracy of  forecasts of  additional  environmental  parameters and  the  efficacy of  
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502 their  inclusion  as variables in  forecast  models.  We  expect  precipitation  forecasts could  be  

beneficial  model  variables that  may lead  to  improved  model  performance,  especially during  

periods when  precipitation  occurs between  forecast  issuance  and  validity..  In  this study we 

chose  not  to  use  forecast  variables (aside  from  tide  level)  because  model  accuracy is affected  

by the  accuracy of  the  forecast  variables (as is evidenced  by Frick et  al.)29  and  historical  records 

of  forecast  environmental  parameters are  often  unavailable  from  the  data  source.  However,  a  

concerted  effort  to  archive  a  sufficient  number  of  environmental  forecasts for  model  training  

could  be  made,  or  forecasts could  be  created  using  time  series techniques.48  

Predictive  metrics of  forecast  models were  similar  to  those  of  the  comparative  baseline  

nowcast  models,  suggesting  that  the  predictive  efficacy of  a  forecast  modeling  system  can  be  

maintained  for  at  least  three  days.  This result  is somewhat  surprising  considering  forecast  

accuracy of  most  environmental  parameters is generally expected  to  decline  with  increasing  

lead  time.  That  predictive  metrics were  similar  between  forecasts and  nowcasts may further  

validate  the  notion  that  information  predictive  of  FIB  can  be  found  in  environmental  observations 

collected  less recently than  solely the  closest  days to  prediction  validity.  Future  work could  

extend  our  framework to  lead  times of  one  week (or  longer)  to  determine  the  lead  times at  which  

predictive  efficacy drops significantly.  

Despite  frequently having  improved  performance  over  the  persistence  method,  the  

sensitivities of  forecast  models (developed  using  the  default  decision  threshold  probability of  

0.5)  were  generally low  (median  of  0.0  overall,  median  of  0.4  for  BLR  models)  and  thus may  be 

unacceptable  for  use  for  beach  management  where  swimmer  health  protection  is the  priority.  

However,  it  should  be  noted  that  the  status quo  has even  lower  sensitivity than  the  forecast  

models.   Low  sensitivity  could  be  due  to  a  number  of  data  limitations  including  site  infrastructure  

changes which  alter  the  FIB  distributions between  training  and  test  sets,  or  lack of  

environmental  data  that  truly  explain  FIB  fate  and  transport  at  the  site.  An  additional  and  likely 

limitation  could  be  due  to  the  imbalanced  nature  of  the  FIB  datasets at  the  specific beaches we  
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528 tested,  where  many more  samples were  in  attainment  than  in  exceedance  of  the  regulatory 

standard;  this is evidenced  by the  poor  performance  of  the  persistence  method.  The  effect  of  

class imbalance  on  model  sensitivity has been  observed  previously by Thoe  et  al.  (2015).23  To  

account   for   low   default   sensitivities,   their   group   optimized   their   models by ‘tuning’   the   decision   

threshold  probability at  which  a  prediction  is for  a  positive  or  negative  class on  the  training  data.  

This increased  the  sensitivity of  their  BLR  models on  test  data  from  19% to  50%.  When  we  

tuned  the  decision  threshold  probabilities of  a  random  subset  of  our  models,  we  saw  an  

improvement  in  sensitivity with  a  drop  in  specificity that  would  likely be  acceptable  for  beach  

management25  (see  the  Supporting  Information  for  more  details).  However,  because  there  is a  

tradeoff  between  model  sensitivity and  specificity,  models should  be  tuned  based  on  the  risk 

tolerance  of  the  forecast  user.  

Comparison  of  the  AUC  of  our  models to  those  in  the  literature  show  that  forecast  

models (agnostic of  tuning)  can  perform  on  par  to  what  is already expected  in  the  water  quality 

prediction  field.  Our  models (particularly,  RF and  GBM  models)  were  able  to  distinguish  

between  positive  and  negative  classes similarly to  those  developed  by Brooks et  al.  .21  Over  the  

15  nowcast  model  types they tested,  the  median  AUC  was 0.67  (IQR  0.63-0.71)  which  is similar  

to  ours.   

The  framework presented  here  serves as a  foundation  for  future  beach  water  quality 

forecasting  research  and  implementation. Additional  potential  research  topics include  assessing  

the  effect  of  training  dataset  size  (i.e.  the  number  of  observations)  on  model  performance;  

exploring  different  model  outputs like  categorical  or  probabilistic predictions;  testing  deep  

learning  model  types such  as long  short-term  memory neural  networks (which  was out  of  scope  

of  the  present  study);12,16  and  incorporating  more  locally-collected  environmental  data  as well  as 

previous FIB  observations as predictor  variables (which  may become  operationally feasible  with  

the  onboarding  of  rapid49  and  autonomous50  sampling  methods that  enable  higher  resolution  

datasets).   
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554 This framework can  be  employed  by health  agencies,  community groups,  or  other  beach  

water  quality stakeholders who  desire  FIB  forecasts up  to  three  days in  advance.  With  adequate  

support,  the  framework can  also  be  integrated  into  existing  nowcast  modeling  systems.  

Attention  must  be  given  to  the  time  indexing  of  environmental  data;  specifically,  we  suggest  

organizing  environmental  variables such  that  forecast  issuance  occurs at  t  =  0.  Many 

environmental  data  sources can  be  accessed  via  the  internet,  enabling  the  automation  of  

modeling  pipelines and  the  issuance  of  daily forecasts of  all  lead  times simultaneously.  

Forecasts can  be  compared  to  routine  monitoring  data  as they are  collected,  and  models can  be  

re-tuned  or  retrained  based  on  what  performance  level  is desired  by operators.  Further,  

forecasts could  be  used  as a  basis to  conduct  proactive  sampling  in  the  case  that  FIB  

exceedances are  predicted.  Thus,  water  quality forecasts would  provide  agencies and  beach  

communities much  more  information  than  what  sampling  alone  provides,  leading  to  improved  

environmental  awareness and  management.  

Though  our  framework was developed  specifically for  FIB  prediction,  we  expect  it  may 

be  useful  for  predicting  other  environmental  hazards  that  have  similarly structured  and  available  

data  (such  as harmful  algal  blooms or  shellfish  toxicity).  We  encourage  the  extension  of  this 

framework to  other  environmental  prediction  applications especially as the  availability of  unique  

environmental  datasets and  novel  modeling  types continues to  grow.  Developing  new  

techniques or  extending  upon  existing  methodologies is an  important  step  in  advancing  

environmental  data  science  and  thus better  understanding  our  interactions with  the  natural  

environment.  
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576 Data  Availability  Statement  

The  data  that  support  the  findings of  this study are  openly available  at  the  Stanford  Digital  

Repository:  https://purl.stanford.edu/nw799cp6263.  The  Python  code  used  to  manipulate  data  

and  develop  and  test  models can  be  found  at:  https://github.com/rtsearcy/wq-forecasting  
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